Variable projection methods for approximate (greatest) common divisor computations
نویسندگان
چکیده
We consider the problem of finding for a given N -tuple of polynomials (real or complex) the closest N -tuple that has a common divisor of degree at least d. Extended weighted Euclidean seminorm of the coefficients is used as a measure of closeness. Two equivalent representations of the problem are considered: (i) direct parameterization over the common divisors and quotients (image representation), and (ii) Sylvester low-rank approximation (kernel representation). We use the duality between leastsquares and least-norm problems to show that (i) and (ii) are closely related to mosaic Hankel low-rank approximation. This allows us to apply to the approximate common divisor problem recent results on complexity and accuracy of computations for mosaic Hankel low-rank approximation. We develop optimization methods based on the variable projection principle both for image and kernel representation. These methods have linear complexity in the degrees of the polynomials for small and large d. We provide a software implementation of the developed methods, which is based on a software package for structured low-rank approximation.
منابع مشابه
Numerical and Symbolical Methods Computing the Greatest Common Divisor of Several Polynomials
The computation of the Greatest Common Divisor (GCD) of a set of polynomials is an important issue in computational mathematics and it is linked to Control Theory very strong. In this paper we present different matrix-based methods, which are developed for the efficient computation of the GCD of several polynomials. Some of these methods are naturally developed for dealing with numerical inaccu...
متن کاملSome Recent Algebraic/numerical Algorithms
Combination of algebraic and numerical techniques for improving the computations in algebra and geometry is a popular research topic of growing interest. We survey some recent progress that we made in this area, in particular , regarding polynomial roottnding, the solution of a polynomial system of equations, the computation of an approximate greatest common divisor of two polynomials as well a...
متن کاملBlind image deconvolution using the Sylvester matrix
Blind image deconvolution refers to the process of determining both an exact image and the blurring function from its inexact image. This thesis presents a solution of the blind image deconvolution problem using polynomial computations. The proposed solution does not require prior knowledge of the blurring function or noise level. Blind image deconvolution is needed in many applications, such a...
متن کاملA fast algorithm for approximate polynomial gcd based on structured matrix computations
An O(n) complexity algorithm for computing an 2-greatest common divisor (gcd) of two polynomials of degree at most n is presented. The algorithm is based on the formulation of polynomial gcd given in terms of resultant (Bézout, Sylvester) matrices, on their displacement structure and on the reduction of displacement structured matrices to Cauchy-like form originally pointed out by Georg Heinig....
متن کاملApproximate greatest common divisor of many polynomials, generalised resultants, and strength of approximation
The computation of the Greatest Common Divisor (GCD) of many polynomials is a nongeneric problem. Techniques defining “approximate GCD” solutions have been defined, but the proper definition of the “approximate” GCD, and the way we can measure the strength of the approximation has remained open. This paper uses recent results on the representation of the GCD of many polynomials, in terms of fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 681 شماره
صفحات -
تاریخ انتشار 2017